据NASA官网10月6日报道:美国宇航局选择29项太空生物学研究提案,其中烟酰胺二核苷酸(NAD)—缓解太空探索中肌肉骨骼损失的策略获得了NASA的奖励。
NASA如何保证宇航员的身体健康
在宇航员前往太空的任务中,宇航员由于宇宙的辐射而导致体内的DNA受损,有研究表明,在经历长达4年的宇宙往返后,太空中高能粒子会导致全身5%的细胞死亡以及显著的衰老,并且几乎百分之百会患上癌症。同时由于太空处于失重状态,宇航员在太空中的运动处于漂浮状态。长期的不运动会导致肌肉活力的不足,甚至萎缩。

NAD可以有效解决这些问题
David Sinclair团队利用NMN(NAD+的前体)提升NAD+的含量,可以有效的解决DNA受损、肌肉骨骼损失的问题。并分别与3月份,10月份先后获得NASA奖项。

NAD缓解肌肉骨骼损失的机制
1. NAD+和SIRT1起到关键作用
研究表明NAD+和SIRT1在血管和肌肉细胞的血管壁内皮细胞之间交互中起到了关键的作用。在肌肉中,SIRT 1信号被激活并产生新的毛细血管,毛细血管是体内基础细小的血管,为组织和器官提供氧气和营养。
然而随着时间的推移,NAD+/SIRT1活性降低,血液流动也随之减少,导致肌肉组织乏养,缺氧。SIRT 1是从肌肉到血管传递生长因子信号的关键信使。缺乏SIRT 1的内皮细胞对运动肌肉释放的促生长蛋白失去敏感性。“就好像这些细胞对肌肉发出的信号充耳不闻”。

2.NMN—刺激血管生长并延缓肌肉萎缩
David Sinclair教授把目光集中在NAD+上,NAD+存在于每个健康的活细胞中,参与细胞上千项反应,能够刺激活化SIRT 1。David Sinclair研究团队使用NMN——NAD+前体,能够有效的增加体内NAD+的含量。在细胞实验中,人和小鼠的内皮细胞经NMN处理后,生长能力增强,细胞死亡率降低。在动物实验中,研究人员向一组20月(大致相当于人类年份的70岁)的小鼠注射给药NMN。NMN的治疗可使幼鼠的毛细血管数量和密度恢复正常。肌肉的血流量也显著增加,并且肌肉的血液供应明显高于未接受NMN的同龄小鼠。

NMN修复DNA的机制
NAD+是ADP核糖基转移酶或核糖基聚合酶(PARP)的**底物,PARP位于多种细胞细胞核内,当自由基和氧化剂对细胞造成损伤时,DNA单链会发生断裂,PARP会被激活。激活的PARP利用辅酶I(NAD+)作为底物转移ADP核糖基到目标蛋白上。
同时生成烟酰胺(Nam),这些目标蛋白参与DNA修复、基因表达、细胞周期进展、细胞存活、染色体重建和基因稳定性等多种功能。
有研究表明PARP对治疗癌症有积极作用,在各种癌症相关过程中发挥多功能作用,包括DNA修复,重组,细胞增殖或细胞死亡。哈佛大学医院的Sinclari博士研究发现:补充NMN提高NAD的含量修复了辐射对小鼠DNA的损伤,使得它与健康小鼠无异。

事实上,NMN还有更多的功效已被证实。
NAD+与昼夜节律
NAD+依赖的脱乙酰酶SIRT1通过连接调节NAD+补救途径的酶反馈回路和昼夜节律转录-翻译反馈回路,成为昼夜节律与代谢之间的桥梁。
NAD+调节生物钟是通过SIRT1实现的。SIRT1将BMAL1和PER2去乙酰化,而这和CLOCK的乙酰化功能是拮抗的,所以SIRT1能抑制CLOCK- BMAL1介导的clock genes的转录。因此,NAD+通过自身水平影响SIRT1去乙酰化活性,从而反过来影响包括NAMPT在内的一系列生物钟相关蛋白的表达。
NAD+与神经系统
Sirtuins是一种依赖烟酰胺腺嘌呤二核苷酸(NAD+)的脱酰基酶,传统上认为它与哺乳动物的热量限制和衰老有关。这些蛋白在衰老过程中对维持神经元的健康也起着重要作用。

在神经发育过程中, SIRT1在结构上起着重要作用,通过Akt-GSK3通路促进轴索生长、神经突生长和树枝状分支。突触的发育和突触强度的调节对记忆的形成至关重要,而sirtuins蛋白不论在生理还是损伤后,都对这一过程中起重要调节作用。
SIRT1在海马体可以以抑制型复合体形式存在,该复合体包含能调控microRNA-134的转录因子YY1。microRNA-134的分布具有脑特异性,能调控cAMP反应结合蛋白(CREB)和脑源性神经营养因子(BDNF)的表达。这对于突触的形成和长期的增强都很重要。
在神经疾病发生发展中,SIRT1在阿尔茨海默氏病、帕金森氏病和运动神经元病等多种神经退行性疾病中发挥保护作用,这些疾病可能与SIRT1在代谢、抗应激和基因组稳定性方面的功能有关。激活SIRT1的药物可能为治疗这些疾病提供一种有希望的方法。
NAD+与肝功能
已知NAD+信号通路中的酶可以保护肝脏不受脂肪堆积、纤维化和胰岛素抵抗的影响,这些都与脂肪肝疾病的发生有关。
NAMPT在高脂膳食诱导脂肪肝发生发展的过程中起关键调节作用:抑制NAMPT将使高脂膳食造成的肝脂肪变性更严重,过表达NAMPT显著改善肝脂质积累;这种调节作用是通过“抑制NAMPT→减少NAD+→抑制SIRT1→减弱SREBP1的去乙酰化→SREBP1活性降低→FASN和ACC表达上调”产生的。
SIRT1及其下游靶点PGC-1a、PSK9和SREBP1维持线粒体功能、胆固醇转运和脂肪酸稳态。SIRT2通过去乙酰化磷酸烯醇丙酮酸羧激酶来控制糖异生;SIRT3调控OXPHOS、脂肪酸氧化、酮生成和抗氧化应激;SIRT6控制糖异生。

由于这些通路在肝脏中的重要性,维持NAD+水平对于维持器官良好功能必不可少。正常情况下,由于肥胖和衰老,NAMPT水平下降,CD38水平升高,导致到中年时,稳态NAD+水平下降2倍。
将NAD+水平提高到年轻水平在预防和治疗肥胖、酒精性脂肪性肝炎和NASH方面收效显著,同时还能改善葡萄糖稳态和线粒体功能障碍,改善肝脏的健康,增强其再生能力,保护肝脏免受肝毒性损害。
NAD+与肾功能
老年肾脏中NAD+水平的降低和sirtuin活性的相应降低在很大程度上是肾功能和顺应性随年龄下降的原因。
①通过NAD+补充激活SIRT1和SIRT3保护高糖诱导的肾系膜细胞肥大,而用NMN治疗小鼠以SIRT1依赖性的方式保护顺铂诱导的急性肾损伤(AKI)。

②5-氨基咪唑-4-羧胺核苷可刺激AMPK活性,增加NAD+水平,并以sirt3依赖的方式保护顺铂诱导的AKI。
③小鼠补充NAM可刺激肾脏保护前列腺素PGE2的分泌,提升缺血后肾功能;NAM也可通过刺激NAD+合成抑制顺铂诱导的AKI 。
NAD+与骨骼肌
与年轻的野生型小鼠相比,小鼠的肌肉萎缩和炎症标志物以及胰岛素信号和胰岛素刺激葡萄糖摄取能力下降。用NAD+前体治疗老年小鼠可显著改善肌肉功能。
用NMN (500 mg/kg/day ip .连续7天)治疗老年小鼠,可以通过增加线粒体功能、增加ATP生成、减少炎症、将糖酵解II型肌肉转变为氧化纤维型肌肉,逆转与年龄相关的有害变化。
NAD+与心脏功能
NAD+水平对正常心脏功能和损伤后的恢复至关重要。在所有NAD+依赖的信号蛋白中,SIRT3似乎是最重要的:
①SIRT3敲除小鼠的OXPHOS酶高度乙酰化,ATP减少,对主动脉收缩高度敏感,可能是由于线粒体通透性过渡孔的调节因子CypD的激活。

②SIRT3-KO鼠在13个月大时就会出现纤维化和心肌肥厚,随着年龄增长,病情进一步加剧,而NMN治疗可以逆转这种下降。
③无论是缺血前30分钟(500 mg/kg, i.p.)或再灌注前和再灌注期间的重复给药,使用NAMPT过表达或NMN治疗都能显著防止压力过载和缺血-再灌注损伤,使梗死面积减少44%左右。
④使用NAD +前体治疗也提高了老年MDX心肌病小鼠的心脏功能。
⑤NAD+前体改善了缺铁诱导的心力衰竭小鼠模型的线粒体、心脏功能。
婕斯NMN是复方的,六合一彼此加持,效果更棒,这简直就是甩其他公司好几条大街呀!
革命性6大超复合成分





